
moore 
neighbourhood
3D
IF DEAD:

IF ALIVE:

13, 14 , 17, 18 , 19 = birth

13 - 26 = survive

CONTEXT

Initially, we were interested in basic self-organizing 
computation systems like cellular automata and their 
capacity of expressing architectural qualities.

Cellular Automata are systems that organize them-
selves by interacting in a local level and are able to pro-
duce complex global results and behaviours.

For our mid-term assignment we started investigating 
2D cellular automaton structures to better understand 
the principles and their outcomes. We then moved to 
3D cases to further explore the system. We particularly 
chose to work with the ‘Moore Neighbourhood’ and after 
experimenting with various rules we focused on the re-
sults of the 3D system with the following rules:

Every dead cell that has exactly 13, 14, 17, 18, 19 alive 
neighbours in his ‘Moore Neighbourhood’ changes its 
state to alive state. Every dead cell with other number 
of neighbours stays dead.

Every alive cell with 13 up to 26 alive neighbours in 
his ‘Moore Neighbourhood’ survives to the next step. 
Every alive cell with less neighbours eventually dies.

FIGURE 01: Rules for the Cellular Automata used as the initial environment. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

FIGURE 02: Stills from the Cellular Automaton process. Images were taken every 40 frames from an rotating amimation running on Pro-
cessing (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)



FIGURE 03: Still from the Cellular Automaton model. Final result after 16 iterations.
(Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

The series of models that we produced informed us 
about interesting spatial qualities that can emerge from  
self-organizing computational systems. At this point 

though, we had not embedded any further logic yet.

Strict and precise rules and computational logic pro-
duced emerging geometry. It was not possible though 
to yield more interesting results, able to be translated to 

other applications such as architectural ones.

Thus, we started getting interested in perfomance 
through computational logic. More speci cally, we got 
really interested in taking advantage of the already pro-
duced substrate and regenerate another version of it 

using optimal material distribution.

We realize our interest is not purely in Cellular Automa-
ta models, but rather in nding a computational means 
of translating rules that could express performance 
criteria through local levels of interaction with the sub-
strate. Therefore, we keep our CA model as a substrate 
that has an interesting  geometry and we shift to Agent 

Based Systems to pursue our goal.



create a condition of an ef cient material distribution.
Regarding the process, every agent rst senses its en-
vironment, it evaluates it and then interacts with it and 
with the rest of the agents. Thus, from local intelligence 
we deduct global emergent performance.

We can divide our behaviours into evaluation/sensory 
ones and steering/locomotion ones at one level and at 
another level into agent-environment interaction and 
agent-agent interaction.

An Agent Based System was incorporated to generate 
a network that can express optimal material distribution. 
Density concentration through ow of agents in the di-
rection of the forces leads us to structural performance 
and material ef ciency.

Thus, we let agents ow from the bottom of the sub-
strate following a set of rules interacting locally with 
their environment and themselves being in uenced by 
a global unitary force.

In the end we get a system in which the summation of 
the forces/vectors acting on the agents on a local level 

CONCEPT OVERVIEW

FIGURE 04: Still of animation after running though the whole environment. Initial agent size is 40. 
(Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)
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FIGURE 05: Pseudocode.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)
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Eventually, the summation of all the behaviours (envi-
ronment points, ock, merging/branching, gravity) de-
ne the velocity vector for each agent at each step.

At each step every agent rst senses its environment. 
In reality this means that every agent senses if there 
is any point within its vision and if there is, it assigns a 
weight to each of these points according to the number 
of their neighbours. In this way the agents evaluate their 
environment and decide which way they should follow.

Agents sense their relation to other agents as well. 
Flock behaviour and a merging/branching behaviour 
are calibrated by this condition.

AGENTS BEHAVIOURS

FIGURE 06: Pseudocode highlighted.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

FIGURE 05: Weight assignment on the points of the environment. The initial agent size is 1. The craziness is disabled. Images were taken 
every 40 frames from a Processing animation (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)
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ENVIRONMENT EXPLORATION  03

The agent might not always be able to identify the exact 
amount of neighbours for each point of the environment.
So if a following agent discovers more information about 
the neighbourhood of a point the weight gets updated.

ENVIRONMENT EXPLORATION  02

As the agent ows it learns more about the neighbour-
hood of each point. Thus, the weight for each point is 
not a static information but at each iteration it gets up-
dated

ENVIRONMENT EXPLORATION  01

First, the agent approaches the points and as soon as 
they get inside its vision it counts its neighbours, which 
eventually is the weight for each point.

FIGURE 06, 07, 08: Weight assignment on the points of the environment.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)
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STEERING ACCORDING TO ENVIRONMENT

Practically, weight assignment is scaling the unitized 
vector between agent’s position and environment point 

scaled by its weight.

After assigning weight to the points the agent explores, 
the agent adds the vectors of the environment points 

and nds a resultant.

FIGURE 09: Vector sum for the environment points and de nition of the steering force. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)
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AGENT-AGENT INTERACTION

Behaviours that de ne the agent-agent interaction are 
incorporated in order for the agents to exchange infor-

mation about the progress of the structure.
At each step agents check their neighbourhood for other 
agents’ activity. More speci cally, they examine neigh-
bouring agents positions (densities) and neighbouring 
agents directions. This implies the use of ocking be-
haviour to keep the agents informed about the activity 

of other agents inside their neighbourhood.

FIGURE 10: Pseudocode highlighted.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)
FIGURE 11: Stills from the animation showing all basic behaviours: gravity, target point attraction, ock, merging/branching. Craziness and 
environment points are disabled. Images were taken every 40 frames from a Processing animation
(Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)



MERGING

Merging is de ned as a behaviour that fuses two agents 
into one.
This happens in two stages: when two agents come 
closer than a speci c small distance ( g.4), separa-
tion is deactivated and they are allowed to come really 
close ( g.5)  and at second stage if they are over a 
certain age, one of them dies, when their distance gets 
really small that they overlap ( g.6).

FLOCK

Flock behaviour is responsible for making the total 
swarm of agents perform a coherent ow avoiding ir-
rational outcomes.
All three simple rules of ocking are adopted:

Cohesion ( g.a) is de ned as the reaction of agents to 
steer towards average position of neighbours.

Separation ( g.2)  is de ned as the reaction of agents 
to avoid crowding neighbours(short repulsion).

Alignment ( g.3)  is de ned as the reaction of the agent 
to steer towards average heading of neighbours.

BRANCHING

Branching allows for density control in sparse areas of 
the environment.
If an agent detects no other agent in the neighbour-
hood in a distance smaller that the so called branching 
range ( g.7), it gives birth to another agent by duplicat-
ing himself ( g.8), as long as it is over a certain age, 
thus able to reproduce itself ( g.9).

FIGURE 12, 13, 14: Flocking, Merging, Branching behaviours. Pictures frome Processing animation (Source: Léonard Balas, Jingcheng Chen, Niko-
laos Xenos)

FIGURE 15: Diagrammatic demostrations of ocking, merging, branching behaviours of the agents. (Source: Léonard Balas, Jingcheng 
Chen, Nikolaos Xenos)

g.1

g.4

g.7

g.2

g.5

g.8

g.3

g.6

g.9



th

h

populate environment

agent birth

sensing/steering

craziness

agent path

mesh generation

environment points flockgravity merging/branching

FIGURE 16: Pseudocode highlighted.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

CRAZINESS

Up to this point we had been producing structures that 
follow strict rules. These rules produce a global behav-
iour of the structure by controlling the local interactions 
under the in uence of one unitary force. The global uni-
tary force suggests the forces’ ow towards a certain di-
rection and it could be gravity. In this way we obtain a 
rational structure that is produced through summing all 
the local forces generated by interactions of the agents 
with the environment and with each other and the global 
unitary force which is the ultimate goal of their motion.

In this way, we end up with certain areas of high concen-
tration of material and other areas that are mostly hollow. 
At this point we came to the conclusion that this could be 
a primary structure. This primary structure only occupies 
a certain percentage of the total environment, which is 
mostly about 30% and returns information about 50% of 
the total environment.

We then got really interested in making the algorithm ca-
pable of creating at the same time a soft layer around the 
primary structure; a secondary structure. In this way we 

manage to explore up to 90% of the environment, re-
turn information about it and create a soft layer around 
the primary structure.

In this behaviour the agent enters a state where the 
global unitary force, the ocking behaviours and the 
merging branching behaviours are not affecting it any-
more. Regarding the environment points, the agent at-
tens their values and all the points then have the same 
values, changing the way the agent perceives its en-
vironment. This might suggest a random walk but this 
is not the case. When the agent goes into the ‘crazy’ 
state, it already has a certain velocity vector, and thus 
inertia. so it will never go backwards. It will oat more 
freely towards its velocity vector and die after a certain 
age. or when it reaches the void over the environment.

This layer is created by the very same agents that cre-
ate the primary structure. In every iteration every agent 
has a very small probability of shifting to the ‘crazy’ 
state, and soon it will die.

FIGURE 17: Crazy behaviour highlighted with yellow.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)
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The density of the secondary structure is de ned by a 
probability percentage that is prede ned from the be-
ginning. Practically, this means that every agent at each 
iteration rolls a dice and if the event is inside a certain 
probability space the agent shifts into the soft layer 
state called ‘crazy’.

In this state the agent becomes performs a freer motion 
which mostly relies on two factors: its inertia and the 
existance of environment points surrounding it. 

That means that as long as there are points around it 
it moves towards an average direction trying to stay in-
side its environment, starting with its last velocity vector 
direction (inertia).

This is acheived by eliminating the in luence of a glob-
al unitary force and the rest of the in uence of other 
agents. As the environment point weight is the same for 
all of the points anymore, the ‘crazy’ agent oats inside 
this environment towards an average direction until it 
reaches a certain age and dies.

FIGURE 18: Diagrammatic demostration of how the agent perceives its environment weight in each case: normal(left), crazy(right).
 (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

FIGURE 19: Crazy behaviour highlighted with yellow.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)



FIGURE 20: Rendering.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

CONCLUSION

In this project we investigated how computational sys-
tems can become performative under architectural cri-
teria and how they can be manipulated to express ar-

chitectural qualities. 

We started exploring computational systems before 
understanding the importance of meeting certain per-
formance criteria. We managed to grasp the notion of 
emergence and we achieved to work with it as purely 

geometrical expression.

We got really interested in manipulating emergence by 
injecting more performative criteria in the process or 
changing the nature of certain criteria already used to 

act more performative.

What we eventually were interested in developing was 
an apparatus capable of recognizing and evaluating its 
environment real-time with optimal material distribution 

as its ultimate goal.

We choose Agent Based Systems considering it as an 
ef cient and economic computational system acting at 

a local level to establish a global outcome.

This apparatus receives a substrate as input, it in-
jects agents in it, and the agents try to nd their way to 
acheive optimal paths for material ef ciency. The trails 

then are meshed establishing a structure.

As a rst attempt this system minimizes the use of ma-
terial to achieve resistance to self load. As future in-
vestigation, we would seriously consider implying more 
structural criteria that create a generative system that 
can have a more integrative behaviour towards several 

types of loads under the scope of material ef ciency.





FIGURE 21: rasshopper de nition highlighted.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

import random
import rhinoscriptsyntax as rs
import scriptcontext as sc
import time
import Rhino.Geometry as rg

# parameters
world_x = size
world_y = size
world_z = size
minworldsize = world_x*world_y*world_z*minpercentage
atternworld = 
entities = 
t ist teps = 
# create cell class
class cell:
    def __init__(self,x,y,z):

self.x = x
self.y = y
self.z = z
self.pos = x,y,z
self.currentstate = None
self.nextstate = 0
self.neighbours = None
self.weight = 0

    # count neightbours in the space
    def countneighbours(self):

count = 0  * 
# top layer
if (self.z + 1 < world_z):

if (self.x - 1 >= 0) and (self.y + 1 < world_y):
count 0  = world self.x - 1 self.y + 1 self.z + 1 .currentstate

if (self.y + 1 < world_y):
count 1  = world self.x self.y + 1 self.z + 1 .currentstate

if (self.x + 1 < world_x) and (self.y + 1 < world_y):
count  = world self.x + 1 self.y + 1 self.z + 1 .currentstate

if (self.x - 1 >= 0):
count  = world self.x - 1 self.y self.z + 1 .currentstate

count  = world self.x self.y self.z + 1 .currentstate
if (self.x + 1 < world_x):

count  = world self.x + 1 self.y self.z + 1 .currentstate
if (self.x - 1 >= 0) and (self.y - 1 >= 0):

count  = world self.x - 1 self.y - 1 self.z + 1 .currentstate
if (self.y - 1 >= 0):

count  = world self.x self.y - 1 self.z + 1 .currentstate
if (self.x + 1 < world_x) and (self.y - 1 >= 0):

count  = world self.x + 1 self.y - 1 self.z + 1 .currentstate
# middle layer
if (self.x - 1 >= 0) and (self.y + 1 < world_y):

count  = world self.x - 1 self.y + 1 self.z .currentstate
if (self.y + 1 < world_y):

count 10  = world self.x self.y + 1 self.z .currentstate
if (self.x + 1 < world_x) and (self.y + 1 < world_y):

count 11  = world self.x + 1 self.y + 1 self.z .currentstate
if (self.x - 1 >= 0):

count 1  = world self.x - 1 self.y self.z .currentstate
if (self.x + 1 < world_x):

count 1  = world self.x + 1 self.y self.z .currentstate
if (self.x - 1 >= 0) and (self.y - 1 >= 0):

count 1  = world self.x - 1 self.y - 1 self.z .currentstate



if (self.y - 1 >= 0):
count 1  = world self.x self.y - 1 self.z .currentstate

if (self.x + 1 < world_x) and (self.y - 1 >= 0):
count 1  = world self.x + 1 self.y - 1 self.z .currentstate

# bottom layer
if self.z - 1 >= 0:

if (self.x - 1 >= 0) and (self.y + 1 < world_y):
count 1  = world self.x - 1 self.y + 1 self.z - 1 .currentstate

if (self.y + 1 < world_y):
count 1  = world self.x self.y + 1 self.z - 1 .currentstate

if (self.x + 1 < world_x) and (self.y + 1 < world_y):
count 1  = world self.x + 1 self.y + 1 self.z - 1 .currentstate

if (self.x - 1 >= 0):
count 0  = world self.x - 1 self.y self.z - 1 .currentstate

count 1  = world self.x self.y self.z - 1 .currentstate
if (self.x + 1 < world_x):

count  = world self.x + 1 self.y self.z - 1 .currentstate
if (self.x - 1 >= 0) and (self.y - 1 >= 0):

count  = world self.x - 1 self.y - 1 self.z - 1 .currentstate
if (self.y - 1 >= 0):

count  = world self.x self.y - 1 self.z - 1 .currentstate
if (self.x + 1 < world_x) and (self.y - 1 >= 0):

count  = world self.x + 1 self.y - 1 self.z - 1 .currentstate

self.neighbours = sum(count)
    # eof
    def calweight(self):

if self.neighbours in range(1 ,1 ) : 
self.weight = 

if self.neighbours in range(1 , 0) : 
self.weight = 

if self.neighbours in range( 0, ) : 
self.weight = 

if self.neighbours in range( , ) : 
self.weight = 1

    #eof
    # decide state of cells for next phase
    def decideLife(self):

if self.currentstate == 0 :
if self.neighbours in 1 ,1 ,1 ,1 ,1  : 

self.nextstate = 1
else:

self.nextstate = 0
if self.currentstate == 1 :

if self.neighbours in range(1 , ) : 
self.nextstate = 1

else:
self.nextstate = 

  # check the current state
    def checkstate(self):

self.countneighbours()
self.decideLife()    

  # update the current state
    def updatestate(self):

self.calweight()
self.currentstate = self.nextstate

# create a world with random lives
def creatworld(x,y,z,percentageo ives):
    global world
    world = 0 for  in xrange(x)  for w in xrange(y)  for e in xrange(z)
    for i in range(x):

for j in range(y):
for k in range(z):

r = random.random()
c = cell(i,j,k)
if r < percentageo ives:

c.currentstate = 1
else:

c.currentstate = 0
world i j k  = c
atternworld.append(c)

#check the survival size of the world
def worldSize():
    Size = 0
    for onecell in atternworld:

Size = Size + onecell.currentstate
    return Size
# check the world
def checkworld():
    for onecell in atternworld:

onecell.checkstate()
# clean the world
def cleanworld():
    rs.DeleteObjects(entities)
    del entities :
# update the world
def updateworld():
    for onecell in atternworld:

onecell.updatestate()
def recordworld():
    pts = 
    weights = 
    neighbours = 
    for onecell in atternworld:

if onecell.currentstate == 1:
pts.append(rg. oint d(onecell.pos 0 ,onecell.pos 1 ,onecell.pos ))
weights.append(onecell.weight)
neighbours.append(onecell.neighbours)

    return pts,weights,neighbours

creatworld(world_x,world_y,world_z,initialpercentage)

while (worldSize() > minworldsize) and run:
    sc.escape_test()

    checkworld()
    cleanworld()
    updateworld()

all = recordworld()

positions = all 0
weights = all 1
neighbours = all

positions = i*int( 00 size) for i in positions



FIGURE 22: rasshopper de nition highlighted.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

import rhinoscriptsyntax as rs
import Rhino.Geometry as rg
import random as rnd
import math

width ,width ,width  = 0, 0, 0
step = 1000
# ====================Start of De ne lasses==================
# De ne space point class
class Point:
    def __init__(self, pos):

self.pos = pos
self.neighbours = 0

# De ne dead crazy agent
class Dead razy gent: 
    def __init__(self, l,trails):

self.l = l
self.trails = trails

    def render(self):
pt = rs. ddPoints(self.trails)
return pt

# De ne crazy agent
class razy gent:  
    def __init__(self, l,v,a):

self.l = l
self.v = rg.Point d(0,0,0. )
self.a = a
self.trails = 
self.lifespan = 00        def update(self):
self.targetpoints()
self.v = rs. ector dd(self.v,self.a)
self.v = limit(self.v,maxVel)
self.l = rs.Vector dd(self.l,self.v)
self.a = rg.Point d(0,0,0)
self.lifespan =  self.lifespan - 1
if self.lifespan < 0:

self.dead()
    def border(self):

if self.l 0  > width  : self.l 0  = 0
if self.l 0  < 0 : self.l 0  = width
if self.l 1  > width  : self.l 1  = 0
if self.l 1  < 0 : self.l 1  = width
if self.l  > width  : self.l  = 0
if self.l  < 0 : self.l  = width

    def trail(self):
self.trails.append(self.l)

    def dead(self):
a = Dead razy gent(self.l,self.trails)
deadcrazyagents.append(a)
crazyagents.remove(self)

    def targetpoints(self):
sum = rg.Point d(0,0,0)
count = 0
localPoints = 
for i in points:

celdist = rs.Distance(i.pos,self.l)
if celdist < targetRange:

localPoints.append(i)
count += 1



if count > 0:
self.trail()
calNeighbours(localPoints)

            self.a = rg.Point d(rnd.uniform(-0. ,0. ),rnd.uniform(-0. ,0. ),rnd.uni-form(0,0.1))

    def render(self):
pt = rs. ddPoints(self.trails)
return pt

# De ne dead agent
class Dead gent:
    def __init__(self, l,trails):

self.l = l
self.trails = trails

    def render(self):
pt = rs. ddPoints(self.trails)
return pt

# De ne normal ow agent
class Normal gent:  
    def __init__(self, l):

self.l = l
self.v = rg.Point d(0,0,0.01)
self.g = rg.Point d(0,0, )
self.a = rg.Point d(0,0,0)
self.merge = False
self.branch = True
self.step = 0
self.trails = 
self.age = len(self.trails)
self. ock = False

    def update(self):
if self. ock == True:

self.separation()
self.trail()

self.branching()
self.cohesion()
self.targetpoints()
self.merging()
self. oordeath()
self.age = len(self.trails)

self.a = rs.Vector dd(self.a,self.g)
self.v = rs.Vector dd(self.v,self.a)
self.v = limit(self.v,maxVel)
self.l = rs.Vector dd(self.l,self.v)
self.a = rg.Point d(0,0,0)    

    def dead(self):
a = Dead gent(self.l,self.trails)
deadagents.append(a)
agents.remove(self)
if random(10) <  : self.nextPopulation()

    def nextPopulation(self):
n = rg.Point d(self.l 0 ,self.l 1 ,-100)
ow  = Normal gent(n)
agents.append( ow )

    def oordeath(self):
if self.l  >= width : self.dead()

    def cohesion(self):
sum = rg.Point d(0,0,0)

count = 0

for i in agents:
distance = rs.Distance(i.l,self.l)
if distance < cohesionRange and distance > 0 :

vision = rs.Vector ngle(i.v,self.v)
if vision <= maxVision ngle:

sum = rs.Vector dd(sum,i.l)
count += 1

if count>0:
sum = rs.VectorScale(sum,1 oat(count))
sum = rs.VectorSubtract(sum,self.l)
sum = limit(sum,maxForce)
sum = rs.VectorScale(sum,cohesionForce)
self.a = rs.Vector dd(self.a,sum)   

    def separation(self):
if self.merge == False or self.age < 100:

sum = rg.Point d(0,0,0)
count = 0
for i in agents:

distance = rs.Distance(i.l,self.l)
if distance < seperateRange and distance > 0 :

vision = rs.Vector ngle(i.v,self.v)
if vision <= maxVision ngle:

diff = rs.VectorSubtract(self.l,i.l)
diff = rs.VectorScale(diff,10 distance)
sum = rs.Vector dd(sum,diff)
count += 1

if count>0:
sum = rs.VectorScale(sum,1 oat(count))
sum = limit(sum,maxForce)
sum = rs.VectorScale(sum,seperateForce)
self.a = rs.Vector dd(self.a,sum)

    def targetpoints(self):
sum = rg.Point d(0,0,0)
count = 0
localPoints = 
for i in points:

celdist = rs.Distance(i.pos,self.l)
if celdist < targetRange:

targetvec = rs.VectorSubtract(i.pos,self.l)
localPoints.append(i)
count += 1

if count > 0:
calNeighbours(localPoints)
for p in localPoints:

targetvec = rs.VectorSubtract(p.pos,self.l)
targetang = rs.Vector ngle(targetvec,self.v)
if targetang <= target ngle:

weight = self.calWeight(p)
targetvec = rs.VectorSubtract(p.pos,self.l)
targetvec = rs.VectorScale(targetvec,weight)
sum = rs.Vector dd(sum,targetvec)
self. ock = True
sum = rs.VectorScale(sum,1 oat(count))
sum = limit(sum,maxForce)
sum = rs.VectorScale(sum,targetForce)
self.a = rs.Vector dd(self.a,sum)

else:
self. ock = False



    def calWeight(self,p):
if p.neighbours in range(0, ): return 
if p.neighbours in range( ,10): return 
if p.neighbours in range(10,1 ): return 
if p.neighbours in range(1 , 0): return 
if p.neighbours in range( 0, ): return 1

    def givebirth(self):
ow = Normal gent(rs.Vector dd(self.l,rg.Point d(0. ,0. ,0. )))
a = rnd.uniform(0,math.pi)
ow.v = rg.Point d(rnd.uniform(- , ),rnd.uniform(- , ), )
ow.merge = False
agents.append( ow)

    def branching(self):
counter = 0
for i in agents:

distance = rs.Distance(i.l,self.l)
if distance > 0 and distance < branchingRange: counter += 1

if counter == 0 and self.age > :
self.givebirth()

    def merging(self):
count = 0
count  = 0
for i in agents:

distance = rs.Distance(i.l,self.l)
if distance < mergingRange and distance > 0 and self.age > 100: count += 1  
if distance <10 and self.age > 100 and (self.l  < i.l ): count  +=1

if count > 1:
self.merge = True

if count  > 0:
self.dead()
self.givebirth()

    def trail(self):
self.trails.append(self.l)

    def render(self):
pt = rs. ddPoints(self.trails)
return pt

# ==================== nd of De ne lasses==================

# limit the max vector
def limit(vec,maxlen):
    l = rs.VectorLength(vec)
    if l > maxlen:

vec = rs.VectorUnitize(vec)
vec = rs.VectorScale(vec,maxlen)

    return vec
# calculate the discovery percentage   
def discoverpercentage():
    y = 0
    for i in points:

if i.neighbours > 0: y += 1
    per = y len(points)
    return round(per, )
# populate agents at beginning
def regularpopulate():
    agentlen = int(math.s rt( nitial gentSize))
    for i in range(agentlen):

for j in range(agentlen):
x = int(width agentlen) * i

y = int(width agentlen) * j
l = rg.Point d(x, y, -100)
ow1 = Normal gent(l)
agents.append( ow1)

# calculate the neighbours of points 
def calNeighbours(localPoints):
    global step
    for i in localPoints:

count = 0
for j in localPoints:

if i != j:
dis = rs.Distance(i.pos,j.pos)
step = min(step,dis)
if  dis < step* : count += 1

    if i.neighbours < count:
i.neighbours = count

# change normal agents to crazy agents in a certain percentage 
def SomeoneGoes razy():
    for i in agents:

if rnd.uniform(0,100) < crazyness:
crazy = razy gent(i.l,i.v,i.a)
crazyagents.append(crazy)

def process():
    normal = 
    deadnormal = 
    crazy = 
    deadcrazy = 
    all nfo = , , ,
    if len(agents) > 0:

for i in agents:
normal.append(i.l)
if len(i.trails) > 1:

all nfo 0 .append(i.trails)
normal.extend(i.trails)

    if len(deadagents) > 0:
for i in deadagents:

if len(i.trails) > 1:
all nfo 1 .append(i.trails)
deadnormal.extend(i.trails)

    if len(crazyagents) > 0:
for i in crazyagents:

crazy.append(i.l)
if len(i.trails) > 1:

all nfo .append(i.trails)
crazy.extend(i.trails)

    if len(deadcrazyagents) > 0:
for i in deadcrazyagents:

if len(i.trails) > 1:
all nfo .append(i.trails)
deadcrazy.extend(i.trails)

    return normal,deadnormal,crazy,deadcrazy,all nfo
if not run:
    global points,agents, deadagents, crazyagents, deadcrazyagents, Normal gentList, 
    Dead gentList, razy gentList, Dead razy gentList
    points = 
    agents, deadagents, crazyagents, deadcrazyagents = , , , 
    Normal gentList, Dead gentList, razy gentList, Dead razy gentList = , , , 
    for i in range(len(Matrix)):

p = Point(Matrix i )
points.append(p)



FIGURE 23: rasshopper de nition highlighted.  (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

import rhinoscriptsyntax as rs

import Rhino.Geometry as rg
from clr import ddReference as addr
addr(“Grasshopper”)

from System import Object
from Grasshopper import DataTree
from Grasshopper.Kernel.Data import GH_Path

def raggedListToDataTree(raggedList):
    rl = raggedList
    result = DataTree object ()
    for i in range(len(rl)):

temp = 
for j in range(len(rl i )):

temp.append(rl i j )
#print i, “ - “,temp
path = GH_Path(i)
result. ddRange(temp, path)

    return result

def dataTreeToList(aTree):
    theList = 
    for i in range(aTree. ranch ount ):

thisListPart = 
thisBranch = aTree.Branch(i)
for j in range(len(thisBranch)):

thisListPart.append( thisBranch j  )
theList.append(thisListPart)

    return theList

Normal gentPoints = raggedListToDataTree(allPts 0 )
DeadNormal gentPoints = raggedListToDataTree(allPts 1 )
razy gentPoints = raggedListToDataTree(allPts )
Dead razy gentPoints = raggedListToDataTree(allPts )

    regularpopulate()
else:
    for i in agents:

i.update()
    for m in crazyagents:

m.update()
    SomeoneGoes razy()

show = process()
Normal gentTrails = show 0
DeadNormal gentTrails = show 1
razy gentTrails = show
Dead razy gentTrails = show
PointsFor urve = show
WorldDiscoverPercentage = str(discoverpercentage()*100) + “%”
Normal gentNumber = len(agents)
Deadl gentNumber = len(deadagents)
razy gentNumber = len(crazyagents)
Dead razy gentNumber = len(deadcrazyagents)
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