
moore
neighbourhood
3D
IF DEAD:

IF ALIVE:

13, 14 , 17, 18 , 19 = birth

13 - 26 = survive

CONTEXT

Initially, we were interested in basic self-organizing
computation systems like cellular automata and their
capacity of expressing architectural qualities.

Cellular Automata are systems that organize them-
selves by interacting in a local level and are able to pro-
duce complex global results and behaviours.

For our mid-term assignment we started investigating
2D cellular automaton structures to better understand
the principles and their outcomes. We then moved to
3D cases to further explore the system. We particularly
chose to work with the ‘Moore Neighbourhood’ and after
experimenting with various rules we focused on the re-
sults of the 3D system with the following rules:

Every dead cell that has exactly 13, 14, 17, 18, 19 alive
neighbours in his ‘Moore Neighbourhood’ changes its
state to alive state. Every dead cell with other number
of neighbours stays dead.

Every alive cell with 13 up to 26 alive neighbours in
his ‘Moore Neighbourhood’ survives to the next step.
Every alive cell with less neighbours eventually dies.

FIGURE 01: Rules for the Cellular Automata used as the initial environment. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

FIGURE 02: Stills from the Cellular Automaton process. Images were taken every 40 frames from an rotating amimation running on Pro-
cessing (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

FIGURE 03: Still from the Cellular Automaton model. Final result after 16 iterations.
(Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

The series of models that we produced informed us
about interesting spatial qualities that can emerge from
self-organizing computational systems. At this point

though, we had not embedded any further logic yet.

Strict and precise rules and computational logic pro-
duced emerging geometry. It was not possible though
to yield more interesting results, able to be translated to

other applications such as architectural ones.

Thus, we started getting interested in perfomance
through computational logic. More speci cally, we got
really interested in taking advantage of the already pro-
duced substrate and regenerate another version of it

using optimal material distribution.

We realize our interest is not purely in Cellular Automa-
ta models, but rather in nding a computational means
of translating rules that could express performance
criteria through local levels of interaction with the sub-
strate. Therefore, we keep our CA model as a substrate
that has an interesting geometry and we shift to Agent

Based Systems to pursue our goal.

create a condition of an ef cient material distribution.
Regarding the process, every agent rst senses its en-
vironment, it evaluates it and then interacts with it and
with the rest of the agents. Thus, from local intelligence
we deduct global emergent performance.

We can divide our behaviours into evaluation/sensory
ones and steering/locomotion ones at one level and at
another level into agent-environment interaction and
agent-agent interaction.

An Agent Based System was incorporated to generate
a network that can express optimal material distribution.
Density concentration through ow of agents in the di-
rection of the forces leads us to structural performance
and material ef ciency.

Thus, we let agents ow from the bottom of the sub-
strate following a set of rules interacting locally with
their environment and themselves being in uenced by
a global unitary force.

In the end we get a system in which the summation of
the forces/vectors acting on the agents on a local level

CONCEPT OVERVIEW

FIGURE 04: Still of animation after running though the whole environment. Initial agent size is 40.
(Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

th

h

FIGURE 05: Pseudocode. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

populate environment

agent birth

sensing/steering

environment points flockgravity merging/branching

agent path

mesh generation

th

h

populate environment

agent birth

sensing/steering

agent path

mesh generation

environment points flockgravity merging/branching

Eventually, the summation of all the behaviours (envi-
ronment points, ock, merging/branching, gravity) de-
ne the velocity vector for each agent at each step.

At each step every agent rst senses its environment.
In reality this means that every agent senses if there
is any point within its vision and if there is, it assigns a
weight to each of these points according to the number
of their neighbours. In this way the agents evaluate their
environment and decide which way they should follow.

Agents sense their relation to other agents as well.
Flock behaviour and a merging/branching behaviour
are calibrated by this condition.

AGENTS BEHAVIOURS

FIGURE 06: Pseudocode highlighted. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

FIGURE 05: Weight assignment on the points of the environment. The initial agent size is 1. The craziness is disabled. Images were taken
every 40 frames from a Processing animation (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

4

3

4

6

7

4 5

8

7 7 4

37

3

4

8

7

54

8

63

5

6 6

43

4

4

37

3

7

4

35 3

53

ENVIRONMENT EXPLORATION 03

The agent might not always be able to identify the exact
amount of neighbours for each point of the environment.
So if a following agent discovers more information about
the neighbourhood of a point the weight gets updated.

ENVIRONMENT EXPLORATION 02

As the agent ows it learns more about the neighbour-
hood of each point. Thus, the weight for each point is
not a static information but at each iteration it gets up-
dated

ENVIRONMENT EXPLORATION 01

First, the agent approaches the points and as soon as
they get inside its vision it counts its neighbours, which
eventually is the weight for each point.

FIGURE 06, 07, 08: Weight assignment on the points of the environment. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

7

5

734

7

7

6

STEERING ACCORDING TO ENVIRONMENT

Practically, weight assignment is scaling the unitized
vector between agent’s position and environment point

scaled by its weight.

After assigning weight to the points the agent explores,
the agent adds the vectors of the environment points

and nds a resultant.

FIGURE 09: Vector sum for the environment points and de nition of the steering force. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

th

h

populate environment

agent birth

sensing/steering

agent path

mesh generation

environment points flockgravity merging/branching

AGENT-AGENT INTERACTION

Behaviours that de ne the agent-agent interaction are
incorporated in order for the agents to exchange infor-

mation about the progress of the structure.
At each step agents check their neighbourhood for other
agents’ activity. More speci cally, they examine neigh-
bouring agents positions (densities) and neighbouring
agents directions. This implies the use of ocking be-
haviour to keep the agents informed about the activity

of other agents inside their neighbourhood.

FIGURE 10: Pseudocode highlighted. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)
FIGURE 11: Stills from the animation showing all basic behaviours: gravity, target point attraction, ock, merging/branching. Craziness and
environment points are disabled. Images were taken every 40 frames from a Processing animation
(Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

MERGING

Merging is de ned as a behaviour that fuses two agents
into one.
This happens in two stages: when two agents come
closer than a speci c small distance (g.4), separa-
tion is deactivated and they are allowed to come really
close (g.5) and at second stage if they are over a
certain age, one of them dies, when their distance gets
really small that they overlap (g.6).

FLOCK

Flock behaviour is responsible for making the total
swarm of agents perform a coherent ow avoiding ir-
rational outcomes.
All three simple rules of ocking are adopted:

Cohesion (g.a) is de ned as the reaction of agents to
steer towards average position of neighbours.

Separation (g.2) is de ned as the reaction of agents
to avoid crowding neighbours(short repulsion).

Alignment (g.3) is de ned as the reaction of the agent
to steer towards average heading of neighbours.

BRANCHING

Branching allows for density control in sparse areas of
the environment.
If an agent detects no other agent in the neighbour-
hood in a distance smaller that the so called branching
range (g.7), it gives birth to another agent by duplicat-
ing himself (g.8), as long as it is over a certain age,
thus able to reproduce itself (g.9).

FIGURE 12, 13, 14: Flocking, Merging, Branching behaviours. Pictures frome Processing animation (Source: Léonard Balas, Jingcheng Chen, Niko-
laos Xenos)

FIGURE 15: Diagrammatic demostrations of ocking, merging, branching behaviours of the agents. (Source: Léonard Balas, Jingcheng
Chen, Nikolaos Xenos)

g.1

g.4

g.7

g.2

g.5

g.8

g.3

g.6

g.9

th

h

populate environment

agent birth

sensing/steering

craziness

agent path

mesh generation

environment points flockgravity merging/branching

FIGURE 16: Pseudocode highlighted. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

CRAZINESS

Up to this point we had been producing structures that
follow strict rules. These rules produce a global behav-
iour of the structure by controlling the local interactions
under the in uence of one unitary force. The global uni-
tary force suggests the forces’ ow towards a certain di-
rection and it could be gravity. In this way we obtain a
rational structure that is produced through summing all
the local forces generated by interactions of the agents
with the environment and with each other and the global
unitary force which is the ultimate goal of their motion.

In this way, we end up with certain areas of high concen-
tration of material and other areas that are mostly hollow.
At this point we came to the conclusion that this could be
a primary structure. This primary structure only occupies
a certain percentage of the total environment, which is
mostly about 30% and returns information about 50% of
the total environment.

We then got really interested in making the algorithm ca-
pable of creating at the same time a soft layer around the
primary structure; a secondary structure. In this way we

manage to explore up to 90% of the environment, re-
turn information about it and create a soft layer around
the primary structure.

In this behaviour the agent enters a state where the
global unitary force, the ocking behaviours and the
merging branching behaviours are not affecting it any-
more. Regarding the environment points, the agent at-
tens their values and all the points then have the same
values, changing the way the agent perceives its en-
vironment. This might suggest a random walk but this
is not the case. When the agent goes into the ‘crazy’
state, it already has a certain velocity vector, and thus
inertia. so it will never go backwards. It will oat more
freely towards its velocity vector and die after a certain
age. or when it reaches the void over the environment.

This layer is created by the very same agents that cre-
ate the primary structure. In every iteration every agent
has a very small probability of shifting to the ‘crazy’
state, and soon it will die.

FIGURE 17: Crazy behaviour highlighted with yellow. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

6

4

7

3

4

11 1

111

The density of the secondary structure is de ned by a
probability percentage that is prede ned from the be-
ginning. Practically, this means that every agent at each
iteration rolls a dice and if the event is inside a certain
probability space the agent shifts into the soft layer
state called ‘crazy’.

In this state the agent becomes performs a freer motion
which mostly relies on two factors: its inertia and the
existance of environment points surrounding it.

That means that as long as there are points around it
it moves towards an average direction trying to stay in-
side its environment, starting with its last velocity vector
direction (inertia).

This is acheived by eliminating the in luence of a glob-
al unitary force and the rest of the in uence of other
agents. As the environment point weight is the same for
all of the points anymore, the ‘crazy’ agent oats inside
this environment towards an average direction until it
reaches a certain age and dies.

FIGURE 18: Diagrammatic demostration of how the agent perceives its environment weight in each case: normal(left), crazy(right).
 (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

FIGURE 19: Crazy behaviour highlighted with yellow. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

FIGURE 20: Rendering. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

CONCLUSION

In this project we investigated how computational sys-
tems can become performative under architectural cri-
teria and how they can be manipulated to express ar-

chitectural qualities.

We started exploring computational systems before
understanding the importance of meeting certain per-
formance criteria. We managed to grasp the notion of
emergence and we achieved to work with it as purely

geometrical expression.

We got really interested in manipulating emergence by
injecting more performative criteria in the process or
changing the nature of certain criteria already used to

act more performative.

What we eventually were interested in developing was
an apparatus capable of recognizing and evaluating its
environment real-time with optimal material distribution

as its ultimate goal.

We choose Agent Based Systems considering it as an
ef cient and economic computational system acting at

a local level to establish a global outcome.

This apparatus receives a substrate as input, it in-
jects agents in it, and the agents try to nd their way to
acheive optimal paths for material ef ciency. The trails

then are meshed establishing a structure.

As a rst attempt this system minimizes the use of ma-
terial to achieve resistance to self load. As future in-
vestigation, we would seriously consider implying more
structural criteria that create a generative system that
can have a more integrative behaviour towards several

types of loads under the scope of material ef ciency.

FIGURE 21: rasshopper de nition highlighted. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

import random
import rhinoscriptsyntax as rs
import scriptcontext as sc
import time
import Rhino.Geometry as rg

parameters
world_x = size
world_y = size
world_z = size
minworldsize = world_x*world_y*world_z*minpercentage
atternworld =
entities =
t ist teps =
create cell class
class cell:
 def __init__(self,x,y,z):

self.x = x
self.y = y
self.z = z
self.pos = x,y,z
self.currentstate = None
self.nextstate = 0
self.neighbours = None
self.weight = 0

 # count neightbours in the space
 def countneighbours(self):

count = 0 *
top layer
if (self.z + 1 < world_z):

if (self.x - 1 >= 0) and (self.y + 1 < world_y):
count 0 = world self.x - 1 self.y + 1 self.z + 1 .currentstate

if (self.y + 1 < world_y):
count 1 = world self.x self.y + 1 self.z + 1 .currentstate

if (self.x + 1 < world_x) and (self.y + 1 < world_y):
count = world self.x + 1 self.y + 1 self.z + 1 .currentstate

if (self.x - 1 >= 0):
count = world self.x - 1 self.y self.z + 1 .currentstate

count = world self.x self.y self.z + 1 .currentstate
if (self.x + 1 < world_x):

count = world self.x + 1 self.y self.z + 1 .currentstate
if (self.x - 1 >= 0) and (self.y - 1 >= 0):

count = world self.x - 1 self.y - 1 self.z + 1 .currentstate
if (self.y - 1 >= 0):

count = world self.x self.y - 1 self.z + 1 .currentstate
if (self.x + 1 < world_x) and (self.y - 1 >= 0):

count = world self.x + 1 self.y - 1 self.z + 1 .currentstate
middle layer
if (self.x - 1 >= 0) and (self.y + 1 < world_y):

count = world self.x - 1 self.y + 1 self.z .currentstate
if (self.y + 1 < world_y):

count 10 = world self.x self.y + 1 self.z .currentstate
if (self.x + 1 < world_x) and (self.y + 1 < world_y):

count 11 = world self.x + 1 self.y + 1 self.z .currentstate
if (self.x - 1 >= 0):

count 1 = world self.x - 1 self.y self.z .currentstate
if (self.x + 1 < world_x):

count 1 = world self.x + 1 self.y self.z .currentstate
if (self.x - 1 >= 0) and (self.y - 1 >= 0):

count 1 = world self.x - 1 self.y - 1 self.z .currentstate

if (self.y - 1 >= 0):
count 1 = world self.x self.y - 1 self.z .currentstate

if (self.x + 1 < world_x) and (self.y - 1 >= 0):
count 1 = world self.x + 1 self.y - 1 self.z .currentstate

bottom layer
if self.z - 1 >= 0:

if (self.x - 1 >= 0) and (self.y + 1 < world_y):
count 1 = world self.x - 1 self.y + 1 self.z - 1 .currentstate

if (self.y + 1 < world_y):
count 1 = world self.x self.y + 1 self.z - 1 .currentstate

if (self.x + 1 < world_x) and (self.y + 1 < world_y):
count 1 = world self.x + 1 self.y + 1 self.z - 1 .currentstate

if (self.x - 1 >= 0):
count 0 = world self.x - 1 self.y self.z - 1 .currentstate

count 1 = world self.x self.y self.z - 1 .currentstate
if (self.x + 1 < world_x):

count = world self.x + 1 self.y self.z - 1 .currentstate
if (self.x - 1 >= 0) and (self.y - 1 >= 0):

count = world self.x - 1 self.y - 1 self.z - 1 .currentstate
if (self.y - 1 >= 0):

count = world self.x self.y - 1 self.z - 1 .currentstate
if (self.x + 1 < world_x) and (self.y - 1 >= 0):

count = world self.x + 1 self.y - 1 self.z - 1 .currentstate

self.neighbours = sum(count)
 # eof
 def calweight(self):

if self.neighbours in range(1 ,1) :
self.weight =

if self.neighbours in range(1 , 0) :
self.weight =

if self.neighbours in range(0,) :
self.weight =

if self.neighbours in range(,) :
self.weight = 1

 #eof
 # decide state of cells for next phase
 def decideLife(self):

if self.currentstate == 0 :
if self.neighbours in 1 ,1 ,1 ,1 ,1 :

self.nextstate = 1
else:

self.nextstate = 0
if self.currentstate == 1 :

if self.neighbours in range(1 ,) :
self.nextstate = 1

else:
self.nextstate =

 # check the current state
 def checkstate(self):

self.countneighbours()
self.decideLife()

 # update the current state
 def updatestate(self):

self.calweight()
self.currentstate = self.nextstate

create a world with random lives
def creatworld(x,y,z,percentageo ives):
 global world
 world = 0 for in xrange(x) for w in xrange(y) for e in xrange(z)
 for i in range(x):

for j in range(y):
for k in range(z):

r = random.random()
c = cell(i,j,k)
if r < percentageo ives:

c.currentstate = 1
else:

c.currentstate = 0
world i j k = c
atternworld.append(c)

#check the survival size of the world
def worldSize():
 Size = 0
 for onecell in atternworld:

Size = Size + onecell.currentstate
 return Size
check the world
def checkworld():
 for onecell in atternworld:

onecell.checkstate()
clean the world
def cleanworld():
 rs.DeleteObjects(entities)
 del entities :
update the world
def updateworld():
 for onecell in atternworld:

onecell.updatestate()
def recordworld():
 pts =
 weights =
 neighbours =
 for onecell in atternworld:

if onecell.currentstate == 1:
pts.append(rg. oint d(onecell.pos 0 ,onecell.pos 1 ,onecell.pos))
weights.append(onecell.weight)
neighbours.append(onecell.neighbours)

 return pts,weights,neighbours

creatworld(world_x,world_y,world_z,initialpercentage)

while (worldSize() > minworldsize) and run:
 sc.escape_test()

 checkworld()
 cleanworld()
 updateworld()

all = recordworld()

positions = all 0
weights = all 1
neighbours = all

positions = i*int(00 size) for i in positions

FIGURE 22: rasshopper de nition highlighted. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

import rhinoscriptsyntax as rs
import Rhino.Geometry as rg
import random as rnd
import math

width ,width ,width = 0, 0, 0
step = 1000
====================Start of De ne lasses==================
De ne space point class
class Point:
 def __init__(self, pos):

self.pos = pos
self.neighbours = 0

De ne dead crazy agent
class Dead razy gent:
 def __init__(self, l,trails):

self.l = l
self.trails = trails

 def render(self):
pt = rs. ddPoints(self.trails)
return pt

De ne crazy agent
class razy gent:
 def __init__(self, l,v,a):

self.l = l
self.v = rg.Point d(0,0,0.)
self.a = a
self.trails =
self.lifespan = 00 def update(self):
self.targetpoints()
self.v = rs. ector dd(self.v,self.a)
self.v = limit(self.v,maxVel)
self.l = rs.Vector dd(self.l,self.v)
self.a = rg.Point d(0,0,0)
self.lifespan = self.lifespan - 1
if self.lifespan < 0:

self.dead()
 def border(self):

if self.l 0 > width : self.l 0 = 0
if self.l 0 < 0 : self.l 0 = width
if self.l 1 > width : self.l 1 = 0
if self.l 1 < 0 : self.l 1 = width
if self.l > width : self.l = 0
if self.l < 0 : self.l = width

 def trail(self):
self.trails.append(self.l)

 def dead(self):
a = Dead razy gent(self.l,self.trails)
deadcrazyagents.append(a)
crazyagents.remove(self)

 def targetpoints(self):
sum = rg.Point d(0,0,0)
count = 0
localPoints =
for i in points:

celdist = rs.Distance(i.pos,self.l)
if celdist < targetRange:

localPoints.append(i)
count += 1

if count > 0:
self.trail()
calNeighbours(localPoints)

 self.a = rg.Point d(rnd.uniform(-0. ,0.),rnd.uniform(-0. ,0.),rnd.uni-form(0,0.1))

 def render(self):
pt = rs. ddPoints(self.trails)
return pt

De ne dead agent
class Dead gent:
 def __init__(self, l,trails):

self.l = l
self.trails = trails

 def render(self):
pt = rs. ddPoints(self.trails)
return pt

De ne normal ow agent
class Normal gent:
 def __init__(self, l):

self.l = l
self.v = rg.Point d(0,0,0.01)
self.g = rg.Point d(0,0,)
self.a = rg.Point d(0,0,0)
self.merge = False
self.branch = True
self.step = 0
self.trails =
self.age = len(self.trails)
self. ock = False

 def update(self):
if self. ock == True:

self.separation()
self.trail()

self.branching()
self.cohesion()
self.targetpoints()
self.merging()
self. oordeath()
self.age = len(self.trails)

self.a = rs.Vector dd(self.a,self.g)
self.v = rs.Vector dd(self.v,self.a)
self.v = limit(self.v,maxVel)
self.l = rs.Vector dd(self.l,self.v)
self.a = rg.Point d(0,0,0)

 def dead(self):
a = Dead gent(self.l,self.trails)
deadagents.append(a)
agents.remove(self)
if random(10) < : self.nextPopulation()

 def nextPopulation(self):
n = rg.Point d(self.l 0 ,self.l 1 ,-100)
ow = Normal gent(n)
agents.append(ow)

 def oordeath(self):
if self.l >= width : self.dead()

 def cohesion(self):
sum = rg.Point d(0,0,0)

count = 0

for i in agents:
distance = rs.Distance(i.l,self.l)
if distance < cohesionRange and distance > 0 :

vision = rs.Vector ngle(i.v,self.v)
if vision <= maxVision ngle:

sum = rs.Vector dd(sum,i.l)
count += 1

if count>0:
sum = rs.VectorScale(sum,1 oat(count))
sum = rs.VectorSubtract(sum,self.l)
sum = limit(sum,maxForce)
sum = rs.VectorScale(sum,cohesionForce)
self.a = rs.Vector dd(self.a,sum)

 def separation(self):
if self.merge == False or self.age < 100:

sum = rg.Point d(0,0,0)
count = 0
for i in agents:

distance = rs.Distance(i.l,self.l)
if distance < seperateRange and distance > 0 :

vision = rs.Vector ngle(i.v,self.v)
if vision <= maxVision ngle:

diff = rs.VectorSubtract(self.l,i.l)
diff = rs.VectorScale(diff,10 distance)
sum = rs.Vector dd(sum,diff)
count += 1

if count>0:
sum = rs.VectorScale(sum,1 oat(count))
sum = limit(sum,maxForce)
sum = rs.VectorScale(sum,seperateForce)
self.a = rs.Vector dd(self.a,sum)

 def targetpoints(self):
sum = rg.Point d(0,0,0)
count = 0
localPoints =
for i in points:

celdist = rs.Distance(i.pos,self.l)
if celdist < targetRange:

targetvec = rs.VectorSubtract(i.pos,self.l)
localPoints.append(i)
count += 1

if count > 0:
calNeighbours(localPoints)
for p in localPoints:

targetvec = rs.VectorSubtract(p.pos,self.l)
targetang = rs.Vector ngle(targetvec,self.v)
if targetang <= target ngle:

weight = self.calWeight(p)
targetvec = rs.VectorSubtract(p.pos,self.l)
targetvec = rs.VectorScale(targetvec,weight)
sum = rs.Vector dd(sum,targetvec)
self. ock = True
sum = rs.VectorScale(sum,1 oat(count))
sum = limit(sum,maxForce)
sum = rs.VectorScale(sum,targetForce)
self.a = rs.Vector dd(self.a,sum)

else:
self. ock = False

 def calWeight(self,p):
if p.neighbours in range(0,): return
if p.neighbours in range(,10): return
if p.neighbours in range(10,1): return
if p.neighbours in range(1 , 0): return
if p.neighbours in range(0,): return 1

 def givebirth(self):
ow = Normal gent(rs.Vector dd(self.l,rg.Point d(0. ,0. ,0.)))
a = rnd.uniform(0,math.pi)
ow.v = rg.Point d(rnd.uniform(- ,),rnd.uniform(- ,),)
ow.merge = False
agents.append(ow)

 def branching(self):
counter = 0
for i in agents:

distance = rs.Distance(i.l,self.l)
if distance > 0 and distance < branchingRange: counter += 1

if counter == 0 and self.age > :
self.givebirth()

 def merging(self):
count = 0
count = 0
for i in agents:

distance = rs.Distance(i.l,self.l)
if distance < mergingRange and distance > 0 and self.age > 100: count += 1
if distance <10 and self.age > 100 and (self.l < i.l): count +=1

if count > 1:
self.merge = True

if count > 0:
self.dead()
self.givebirth()

 def trail(self):
self.trails.append(self.l)

 def render(self):
pt = rs. ddPoints(self.trails)
return pt

==================== nd of De ne lasses==================

limit the max vector
def limit(vec,maxlen):
 l = rs.VectorLength(vec)
 if l > maxlen:

vec = rs.VectorUnitize(vec)
vec = rs.VectorScale(vec,maxlen)

 return vec
calculate the discovery percentage
def discoverpercentage():
 y = 0
 for i in points:

if i.neighbours > 0: y += 1
 per = y len(points)
 return round(per,)
populate agents at beginning
def regularpopulate():
 agentlen = int(math.s rt(nitial gentSize))
 for i in range(agentlen):

for j in range(agentlen):
x = int(width agentlen) * i

y = int(width agentlen) * j
l = rg.Point d(x, y, -100)
ow1 = Normal gent(l)
agents.append(ow1)

calculate the neighbours of points
def calNeighbours(localPoints):
 global step
 for i in localPoints:

count = 0
for j in localPoints:

if i != j:
dis = rs.Distance(i.pos,j.pos)
step = min(step,dis)
if dis < step* : count += 1

 if i.neighbours < count:
i.neighbours = count

change normal agents to crazy agents in a certain percentage
def SomeoneGoes razy():
 for i in agents:

if rnd.uniform(0,100) < crazyness:
crazy = razy gent(i.l,i.v,i.a)
crazyagents.append(crazy)

def process():
 normal =
 deadnormal =
 crazy =
 deadcrazy =
 all nfo = , , ,
 if len(agents) > 0:

for i in agents:
normal.append(i.l)
if len(i.trails) > 1:

all nfo 0 .append(i.trails)
normal.extend(i.trails)

 if len(deadagents) > 0:
for i in deadagents:

if len(i.trails) > 1:
all nfo 1 .append(i.trails)
deadnormal.extend(i.trails)

 if len(crazyagents) > 0:
for i in crazyagents:

crazy.append(i.l)
if len(i.trails) > 1:

all nfo .append(i.trails)
crazy.extend(i.trails)

 if len(deadcrazyagents) > 0:
for i in deadcrazyagents:

if len(i.trails) > 1:
all nfo .append(i.trails)
deadcrazy.extend(i.trails)

 return normal,deadnormal,crazy,deadcrazy,all nfo
if not run:
 global points,agents, deadagents, crazyagents, deadcrazyagents, Normal gentList,
 Dead gentList, razy gentList, Dead razy gentList
 points =
 agents, deadagents, crazyagents, deadcrazyagents = , , ,
 Normal gentList, Dead gentList, razy gentList, Dead razy gentList = , , ,
 for i in range(len(Matrix)):

p = Point(Matrix i)
points.append(p)

FIGURE 23: rasshopper de nition highlighted. (Source: Léonard Balas, Jingcheng Chen, Nikolaos Xenos)

import rhinoscriptsyntax as rs

import Rhino.Geometry as rg
from clr import ddReference as addr
addr(“Grasshopper”)

from System import Object
from Grasshopper import DataTree
from Grasshopper.Kernel.Data import GH_Path

def raggedListToDataTree(raggedList):
 rl = raggedList
 result = DataTree object ()
 for i in range(len(rl)):

temp =
for j in range(len(rl i)):

temp.append(rl i j)
#print i, “ - “,temp
path = GH_Path(i)
result. ddRange(temp, path)

 return result

def dataTreeToList(aTree):
 theList =
 for i in range(aTree. ranch ount):

thisListPart =
thisBranch = aTree.Branch(i)
for j in range(len(thisBranch)):

thisListPart.append(thisBranch j)
theList.append(thisListPart)

 return theList

Normal gentPoints = raggedListToDataTree(allPts 0)
DeadNormal gentPoints = raggedListToDataTree(allPts 1)
razy gentPoints = raggedListToDataTree(allPts)
Dead razy gentPoints = raggedListToDataTree(allPts)

 regularpopulate()
else:
 for i in agents:

i.update()
 for m in crazyagents:

m.update()
 SomeoneGoes razy()

show = process()
Normal gentTrails = show 0
DeadNormal gentTrails = show 1
razy gentTrails = show
Dead razy gentTrails = show
PointsFor urve = show
WorldDiscoverPercentage = str(discoverpercentage()*100) + “%”
Normal gentNumber = len(agents)
Deadl gentNumber = len(deadagents)
razy gentNumber = len(crazyagents)
Dead razy gentNumber = len(deadcrazyagents)

References

Fourie, P. and Groenwold, A. (2002). The particle swarm optimization algorithm in size and shape optimization.
Structural and Multidisciplinary Optimization, 23(4), pp.259-267.

Hensel, M., Menges, A. and Weinstock, M. (2010). Emergent technologies and design. Oxon [England]: Rout-
ledge.

Hodge, A., Berta, G., Doussan, C., Merchan, F. and Crespi, M. (2009). Plant root growth, architecture and func-
tion. Plant Soil, 321(1-2), pp.153-187.

Leach, N. (2009). Digital cities. Chichester: John Wiley & Sons.

Menges, A. (2012). Material computation. Hoboken, N.J.: Wiley.

Particle Swarm Optimization: Tutorial. (2016). [online] Swarmintelligence.org. Available at: http://www.swar-
mintelligence.org/tutorials.php [Accessed 4 Mar. 2016].

Shiffman, D. (2012). The nature of the code. [S.l.]: D. Shiffman.

Smith, S. and De Smet, I. (2012). Root system architecture: insights from Arabidopsis and cereal crops. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 367(1595), pp.1441-1452.

